Known Universe - Netflix

Tue 25 June 2019

Known Universe - Netflix

Type: Documentary

Languages: English

Status: Ended

Runtime: 60 minutes

Premier: 2009-02-15

Known Universe - Observable universe - Netflix

The observable universe is a spherical region of the Universe comprising all matter that can be observed from Earth at the present time, because electromagnetic radiation from these objects has had time to reach Earth since the beginning of the cosmological expansion. There are at least 2 trillion galaxies in the observable universe. Assuming the universe is isotropic, the distance to the edge of the observable universe is roughly the same in each direction. That is, the observable universe is a spherical volume (a ball) centered on the observer. Every location in the universe has its own observable universe, which may or may not overlap with the one centered on Earth. The word observable in this sense does not refer to the capability of modern technology to detect light or other information from an object, or whether there is anything to be detected. It refers to the physical limit created by the speed of light itself. Because no signals can travel faster than light, any object farther away from us than light could travel in the age of the universe (estimated as of 2015 around 13.799±0.021 billion years) simply cannot be detected, as they have not reached us yet. Sometimes astrophysicists distinguish between the visible universe, which includes only signals emitted since recombination—and the observable universe, which includes signals since the beginning of the cosmological expansion (the Big Bang in traditional physical cosmology, the end of the inflationary epoch in modern cosmology). According to calculations, the current comoving distance—proper distance, which takes into account that the universe has expanded since the light was emitted—to particles from which the cosmic microwave background radiation (CMBR) was emitted, which represent the radius of the visible universe, is about 14.0 billion parsecs (about 45.7 billion light-years), while the comoving distance to the edge of the observable universe is about 14.3 billion parsecs (about 46.6 billion light-years), about 2% larger. The radius of the observable universe is therefore estimated to be about 46.5 billion light-years and its diameter about 28.5 gigaparsecs (93 billion light-years, 8.8×1023 kilometres or 5.5×1023 miles). The total mass of ordinary matter in the universe can be calculated using the critical density and the diameter of the observable universe to be about 1.5×1053 kg. Since the expansion of the universe is known to accelerate and will become exponential in the future, the light emitted from all distant objects past some time dependent on their current redshift will never reach the Earth. In the future all currently observable objects will slowly freeze in time while emitting progressively redder and fainter light. For instance, objects with the current redshift z from 5 to 10 will remain observable for no more than 4–6 billion years. In addition, light emitted by objects situated beyond a certain comoving distance (currently about 19 billion parsecs) will never reach Earth.

Known Universe - Mass of ordinary matter - Netflix

The mass of the observable universe is often quoted as 1050 tonnes or 1053 kg. In this context, mass refers to ordinary matter and includes the interstellar medium (ISM) and the intergalactic medium (IGM). However, it excludes dark matter and dark energy. This quoted value for the mass of ordinary matter in the universe can be estimated based on critical density. The calculations are for the observable universe only as the volume of the whole is unknown and may be infinite.

Known Universe - References - Netflix